Senin, 28 November 2016

Analisis Matematis Rekursif

03.50 Posted by Randy Vianda Putra No comments

Binary Search Recursive

FUNCTION BinarySearch(input a1,a2,..., an: array of integer, i:integer, j:integer, cari:integer)

KAMUS
i, j, mid : integer
ketemu : boolean

i ← 1
j ← n

ALGORITMA
if (i <= j) then
       mid ← (i + j) / 2

        if (cari = a[mid]) then
              return mid // data ditemukan
          else if (cari < a[mid]) then
             return BinarySearch(a, i, mid - 1, cari)
          else
             return BinarySearch(a, mid + 1, j, cari)
          endif
      endif
   return -1 // tidak ditemukan
Operator Utama
=
Tmax(n)=log n
Tavg(n)=log n
Tmin(n)=1








Quick Sort

FUNCTION partition (input/output a :
   array[1..n] of integer, input x,y :
   integer, output p,q : integer)

KAMUS
   pivot, temp : integer

ALGORITMA
   pivot ← a [(x+y) div 2]
   p ← x
   q ← y
repeat
   while (a[p] < pivot) do
       p ← p + 1
   endwhile

   while (pivot < a[q]) do
       q ← q – 1
   endwhile

   if (p <= q) then
       temp ← a[p]
       a[p] ← a[q]
       a[q] ← temp
       p ← p + 1
       q ← q – 1
   endif
until (p > q)

FUNCTION quicksort (input/output a :
   array [1..n] of integer, input x,y :
   integer)

KAMUS
   k : integer

ALGORITMA
   if (x < y) then
       partition(a,x,y,k)
       quicksort(a,x,k)
       quicksort(a,k+1,y)
   endif    
Operator Utama
<
Tmax(n)= n log n
Tavg(n)= n log n
Tmin(n)=1

MaksMin

Procedure MaksMin (Input M :TabelInt, a, b, c : integer output Mn, Mks : integer)

KAMUS
     Mn1, Mn2, Mks1, Mks2 : integer

ALGORITMA
     if a=b then
               Mn←Ma
               Mks←Ma
             elsed
             if (a=b-1) then
                if Ma < Mb then
                        Mks←Mb
                        Mn←Ma
                else
                        Mks←Ma
                        Mn←Mb
                endif
     else
               c ←(a+b) div 2
               MnMks2(M, a, c, Mn1, Mks1)
               MnMks2(M, c+1, Mn2, Mks2)
               If Mn1 <  Mn2 then
                        Mn←Mn1
               Else
                        Mn←Mn2   
               Endif

               If Mks1<Mks2 then
                         Mks←Mks1
               Else
                         Mks←Mks2
               Endif

T(n)=0    , n=1
      =1    , n =2
      =2T(n/2) + 2 .  n > 2
T(n) = 3n / 2 - 2




Fibonacci

Procedure fibonacci(Input n : integer)

KAMUS

ALGORITMA
 If n <= 1 then
     return n
 else
     return fibonacci(n - 1) + fibonacci(n - 2)
 endif

Operator Utama : +

T(n) = 0 untuk n <= 1
T(n) = T(n-1) + T(n-2) untuk n > 1

Substitute :
T(n-1) = T(n-2) + T(n-3)
T(n-2) = T(n-3) + T(n-4)

T(n) = [ T(n-2) + T(n-3) ] + [ T(n-3)+T(n-4) ]

T(n) = O(2n-1) + O(2n-2) + O(1)
T(n) = O(2n)


0 komentar:

Posting Komentar